3.206 \(\int \frac {\tanh ^2(x)}{(a+b \text {sech}^2(x))^{3/2}} \, dx\)

Optimal. Leaf size=51 \[ \frac {\tanh ^{-1}\left (\frac {\sqrt {a} \tanh (x)}{\sqrt {a-b \tanh ^2(x)+b}}\right )}{a^{3/2}}-\frac {\tanh (x)}{a \sqrt {a-b \tanh ^2(x)+b}} \]

[Out]

arctanh(a^(1/2)*tanh(x)/(a+b-b*tanh(x)^2)^(1/2))/a^(3/2)-tanh(x)/a/(a+b-b*tanh(x)^2)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.22, antiderivative size = 51, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.294, Rules used = {4141, 1975, 471, 377, 206} \[ \frac {\tanh ^{-1}\left (\frac {\sqrt {a} \tanh (x)}{\sqrt {a-b \tanh ^2(x)+b}}\right )}{a^{3/2}}-\frac {\tanh (x)}{a \sqrt {a-b \tanh ^2(x)+b}} \]

Antiderivative was successfully verified.

[In]

Int[Tanh[x]^2/(a + b*Sech[x]^2)^(3/2),x]

[Out]

ArcTanh[(Sqrt[a]*Tanh[x])/Sqrt[a + b - b*Tanh[x]^2]]/a^(3/2) - Tanh[x]/(a*Sqrt[a + b - b*Tanh[x]^2])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 471

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[(e^(n -
1)*(e*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(n*(b*c - a*d)*(p + 1)), x] - Dist[e^n/(n*(b*c -
 a*d)*(p + 1)), Int[(e*x)^(m - n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*Simp[c*(m - n + 1) + d*(m + n*(p + q + 1)
+ 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, q}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[p, -1] && GeQ[n
, m - n + 1] && GtQ[m - n + 1, 0] && IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 1975

Int[(u_)^(p_.)*(v_)^(q_.)*((e_.)*(x_))^(m_.), x_Symbol] :> Int[(e*x)^m*ExpandToSum[u, x]^p*ExpandToSum[v, x]^q
, x] /; FreeQ[{e, m, p, q}, x] && BinomialQ[{u, v}, x] && EqQ[BinomialDegree[u, x] - BinomialDegree[v, x], 0]
&&  !BinomialMatchQ[{u, v}, x]

Rule 4141

Int[((a_) + (b_.)*sec[(e_.) + (f_.)*(x_)]^(n_))^(p_.)*((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> With[
{ff = FreeFactors[Tan[e + f*x], x]}, Dist[ff/f, Subst[Int[((d*ff*x)^m*(a + b*(1 + ff^2*x^2)^(n/2))^p)/(1 + ff^
2*x^2), x], x, Tan[e + f*x]/ff], x]] /; FreeQ[{a, b, d, e, f, m, p}, x] && IntegerQ[n/2] && (IntegerQ[m/2] ||
EqQ[n, 2])

Rubi steps

\begin {align*} \int \frac {\tanh ^2(x)}{\left (a+b \text {sech}^2(x)\right )^{3/2}} \, dx &=\operatorname {Subst}\left (\int \frac {x^2}{\left (1-x^2\right ) \left (a+b \left (1-x^2\right )\right )^{3/2}} \, dx,x,\tanh (x)\right )\\ &=\operatorname {Subst}\left (\int \frac {x^2}{\left (1-x^2\right ) \left (a+b-b x^2\right )^{3/2}} \, dx,x,\tanh (x)\right )\\ &=-\frac {\tanh (x)}{a \sqrt {a+b-b \tanh ^2(x)}}+\frac {\operatorname {Subst}\left (\int \frac {1}{\left (1-x^2\right ) \sqrt {a+b-b x^2}} \, dx,x,\tanh (x)\right )}{a}\\ &=-\frac {\tanh (x)}{a \sqrt {a+b-b \tanh ^2(x)}}+\frac {\operatorname {Subst}\left (\int \frac {1}{1-a x^2} \, dx,x,\frac {\tanh (x)}{\sqrt {a+b-b \tanh ^2(x)}}\right )}{a}\\ &=\frac {\tanh ^{-1}\left (\frac {\sqrt {a} \tanh (x)}{\sqrt {a+b-b \tanh ^2(x)}}\right )}{a^{3/2}}-\frac {\tanh (x)}{a \sqrt {a+b-b \tanh ^2(x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [B]  time = 0.76, size = 128, normalized size = 2.51 \[ \frac {\text {sech}^2(x) (a \cosh (2 x)+a+2 b) \left (\text {sech}(x) \sinh ^{-1}\left (\frac {\sqrt {a} \sinh (x)}{\sqrt {a+b}}\right ) (a \cosh (2 x)+a+2 b)-2 \sqrt {a} \sqrt {a+b} \tanh (x) \sqrt {\frac {a \sinh ^2(x)+a+b}{a+b}}\right )}{4 a^{3/2} \sqrt {a+b} \sqrt {\frac {a \sinh ^2(x)+a+b}{a+b}} \left (a+b \text {sech}^2(x)\right )^{3/2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Tanh[x]^2/(a + b*Sech[x]^2)^(3/2),x]

[Out]

((a + 2*b + a*Cosh[2*x])*Sech[x]^2*(ArcSinh[(Sqrt[a]*Sinh[x])/Sqrt[a + b]]*(a + 2*b + a*Cosh[2*x])*Sech[x] - 2
*Sqrt[a]*Sqrt[a + b]*Sqrt[(a + b + a*Sinh[x]^2)/(a + b)]*Tanh[x]))/(4*a^(3/2)*Sqrt[a + b]*(a + b*Sech[x]^2)^(3
/2)*Sqrt[(a + b + a*Sinh[x]^2)/(a + b)])

________________________________________________________________________________________

fricas [B]  time = 0.54, size = 1733, normalized size = 33.98 \[ \text {result too large to display} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(x)^2/(a+b*sech(x)^2)^(3/2),x, algorithm="fricas")

[Out]

[1/4*((a*cosh(x)^4 + 4*a*cosh(x)*sinh(x)^3 + a*sinh(x)^4 + 2*(a + 2*b)*cosh(x)^2 + 2*(3*a*cosh(x)^2 + a + 2*b)
*sinh(x)^2 + 4*(a*cosh(x)^3 + (a + 2*b)*cosh(x))*sinh(x) + a)*sqrt(a)*log((a*b^2*cosh(x)^8 + 8*a*b^2*cosh(x)*s
inh(x)^7 + a*b^2*sinh(x)^8 - 2*(a*b^2 - b^3)*cosh(x)^6 + 2*(14*a*b^2*cosh(x)^2 - a*b^2 + b^3)*sinh(x)^6 + 4*(1
4*a*b^2*cosh(x)^3 - 3*(a*b^2 - b^3)*cosh(x))*sinh(x)^5 + (a^3 + 4*a^2*b + 9*a*b^2)*cosh(x)^4 + (70*a*b^2*cosh(
x)^4 + a^3 + 4*a^2*b + 9*a*b^2 - 30*(a*b^2 - b^3)*cosh(x)^2)*sinh(x)^4 + 4*(14*a*b^2*cosh(x)^5 - 10*(a*b^2 - b
^3)*cosh(x)^3 + (a^3 + 4*a^2*b + 9*a*b^2)*cosh(x))*sinh(x)^3 + a^3 + 2*(a^3 + 3*a^2*b)*cosh(x)^2 + 2*(14*a*b^2
*cosh(x)^6 - 15*(a*b^2 - b^3)*cosh(x)^4 + a^3 + 3*a^2*b + 3*(a^3 + 4*a^2*b + 9*a*b^2)*cosh(x)^2)*sinh(x)^2 + s
qrt(2)*(b^2*cosh(x)^6 + 6*b^2*cosh(x)*sinh(x)^5 + b^2*sinh(x)^6 - 3*b^2*cosh(x)^4 + 3*(5*b^2*cosh(x)^2 - b^2)*
sinh(x)^4 + 4*(5*b^2*cosh(x)^3 - 3*b^2*cosh(x))*sinh(x)^3 - (a^2 + 4*a*b)*cosh(x)^2 + (15*b^2*cosh(x)^4 - 18*b
^2*cosh(x)^2 - a^2 - 4*a*b)*sinh(x)^2 - a^2 + 2*(3*b^2*cosh(x)^5 - 6*b^2*cosh(x)^3 - (a^2 + 4*a*b)*cosh(x))*si
nh(x))*sqrt(a)*sqrt((a*cosh(x)^2 + a*sinh(x)^2 + a + 2*b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)) + 4*(2*
a*b^2*cosh(x)^7 - 3*(a*b^2 - b^3)*cosh(x)^5 + (a^3 + 4*a^2*b + 9*a*b^2)*cosh(x)^3 + (a^3 + 3*a^2*b)*cosh(x))*s
inh(x))/(cosh(x)^6 + 6*cosh(x)^5*sinh(x) + 15*cosh(x)^4*sinh(x)^2 + 20*cosh(x)^3*sinh(x)^3 + 15*cosh(x)^2*sinh
(x)^4 + 6*cosh(x)*sinh(x)^5 + sinh(x)^6)) + (a*cosh(x)^4 + 4*a*cosh(x)*sinh(x)^3 + a*sinh(x)^4 + 2*(a + 2*b)*c
osh(x)^2 + 2*(3*a*cosh(x)^2 + a + 2*b)*sinh(x)^2 + 4*(a*cosh(x)^3 + (a + 2*b)*cosh(x))*sinh(x) + a)*sqrt(a)*lo
g(-(a*cosh(x)^4 + 4*a*cosh(x)*sinh(x)^3 + a*sinh(x)^4 + 2*(a + b)*cosh(x)^2 + 2*(3*a*cosh(x)^2 + a + b)*sinh(x
)^2 + sqrt(2)*(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2 + 1)*sqrt(a)*sqrt((a*cosh(x)^2 + a*sinh(x)^2 + a + 2*
b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)) + 4*(a*cosh(x)^3 + (a + b)*cosh(x))*sinh(x) + a)/(cosh(x)^2 +
2*cosh(x)*sinh(x) + sinh(x)^2)) - 4*sqrt(2)*(a*cosh(x)^2 + 2*a*cosh(x)*sinh(x) + a*sinh(x)^2 - a)*sqrt((a*cosh
(x)^2 + a*sinh(x)^2 + a + 2*b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)))/(a^3*cosh(x)^4 + 4*a^3*cosh(x)*si
nh(x)^3 + a^3*sinh(x)^4 + a^3 + 2*(a^3 + 2*a^2*b)*cosh(x)^2 + 2*(3*a^3*cosh(x)^2 + a^3 + 2*a^2*b)*sinh(x)^2 +
4*(a^3*cosh(x)^3 + (a^3 + 2*a^2*b)*cosh(x))*sinh(x)), -1/2*((a*cosh(x)^4 + 4*a*cosh(x)*sinh(x)^3 + a*sinh(x)^4
 + 2*(a + 2*b)*cosh(x)^2 + 2*(3*a*cosh(x)^2 + a + 2*b)*sinh(x)^2 + 4*(a*cosh(x)^3 + (a + 2*b)*cosh(x))*sinh(x)
 + a)*sqrt(-a)*arctan(sqrt(2)*(b*cosh(x)^2 + 2*b*cosh(x)*sinh(x) + b*sinh(x)^2 + a)*sqrt(-a)*sqrt((a*cosh(x)^2
 + a*sinh(x)^2 + a + 2*b)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2))/(a*b*cosh(x)^4 + 4*a*b*cosh(x)*sinh(x)^
3 + a*b*sinh(x)^4 - (a^2 + 3*a*b)*cosh(x)^2 + (6*a*b*cosh(x)^2 - a^2 - 3*a*b)*sinh(x)^2 - a^2 + 2*(2*a*b*cosh(
x)^3 - (a^2 + 3*a*b)*cosh(x))*sinh(x))) + (a*cosh(x)^4 + 4*a*cosh(x)*sinh(x)^3 + a*sinh(x)^4 + 2*(a + 2*b)*cos
h(x)^2 + 2*(3*a*cosh(x)^2 + a + 2*b)*sinh(x)^2 + 4*(a*cosh(x)^3 + (a + 2*b)*cosh(x))*sinh(x) + a)*sqrt(-a)*arc
tan(sqrt(2)*(cosh(x)^2 + 2*cosh(x)*sinh(x) + sinh(x)^2 + 1)*sqrt(-a)*sqrt((a*cosh(x)^2 + a*sinh(x)^2 + a + 2*b
)/(cosh(x)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2))/(a*cosh(x)^4 + 4*a*cosh(x)*sinh(x)^3 + a*sinh(x)^4 + 2*(a + 2*b
)*cosh(x)^2 + 2*(3*a*cosh(x)^2 + a + 2*b)*sinh(x)^2 + 4*(a*cosh(x)^3 + (a + 2*b)*cosh(x))*sinh(x) + a)) + 2*sq
rt(2)*(a*cosh(x)^2 + 2*a*cosh(x)*sinh(x) + a*sinh(x)^2 - a)*sqrt((a*cosh(x)^2 + a*sinh(x)^2 + a + 2*b)/(cosh(x
)^2 - 2*cosh(x)*sinh(x) + sinh(x)^2)))/(a^3*cosh(x)^4 + 4*a^3*cosh(x)*sinh(x)^3 + a^3*sinh(x)^4 + a^3 + 2*(a^3
 + 2*a^2*b)*cosh(x)^2 + 2*(3*a^3*cosh(x)^2 + a^3 + 2*a^2*b)*sinh(x)^2 + 4*(a^3*cosh(x)^3 + (a^3 + 2*a^2*b)*cos
h(x))*sinh(x))]

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(x)^2/(a+b*sech(x)^2)^(3/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Warn
ing, replacing 0 by ` u`, a substitution variable should perhaps be purged.Warning, replacing 0 by ` u`, a sub
stitution variable should perhaps be purged.Warning, replacing 0 by ` u`, a substitution variable should perha
ps be purged.Error: Bad Argument Type

________________________________________________________________________________________

maple [F]  time = 0.33, size = 0, normalized size = 0.00 \[ \int \frac {\tanh ^{2}\relax (x )}{\left (a +b \mathrm {sech}\relax (x )^{2}\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tanh(x)^2/(a+b*sech(x)^2)^(3/2),x)

[Out]

int(tanh(x)^2/(a+b*sech(x)^2)^(3/2),x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\tanh \relax (x)^{2}}{{\left (b \operatorname {sech}\relax (x)^{2} + a\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(x)^2/(a+b*sech(x)^2)^(3/2),x, algorithm="maxima")

[Out]

integrate(tanh(x)^2/(b*sech(x)^2 + a)^(3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \[ \int \frac {{\mathrm {tanh}\relax (x)}^2}{{\left (a+\frac {b}{{\mathrm {cosh}\relax (x)}^2}\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tanh(x)^2/(a + b/cosh(x)^2)^(3/2),x)

[Out]

int(tanh(x)^2/(a + b/cosh(x)^2)^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\tanh ^{2}{\relax (x )}}{\left (a + b \operatorname {sech}^{2}{\relax (x )}\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tanh(x)**2/(a+b*sech(x)**2)**(3/2),x)

[Out]

Integral(tanh(x)**2/(a + b*sech(x)**2)**(3/2), x)

________________________________________________________________________________________